
Verification as a Mature Discipline:
Using the

Verification Methodology Manual for SystemVerilog

Jonathan Bromley
Doulos Ltd, Ringwood, UK

2

Aims

• Road map
– Covers highlights and interesting features from the VMM
– Many additional concepts and details in the book itself

• Key ideas
– Explore overall structure, motivation, techniques

• Practical challenges
– Verification methodology must operate in the real world
– Uses some advanced SystemVerilog features

3

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

4

Motivation

• All verification environments should follow industry
best-practice and shared conventions
– for flexibility, interoperability, re-use, verification confidence

• Verification is complicated and difficult
– needs specific guidelines and ready-to-use infrastructure

• Adopt proven prior art wherever possible

5

Meeting the challenges

• Common infrastructure must support diverse
applications
– Standard design patterns, agreed approaches
– Class inheritance and polymorphism permits

application-specific extensions of standard library

• Verification practice needs a scientific basis
– Proven benefits of random stimulus generation
– Functional coverage for measurable verification productivity

6

VMM background

• Jointly created by Synopsys and ARM

• Incorporates...
– ARM experience in system level verification
– Synopsys experience with advanced RTL verification

• Builds on existing Synopsys reference verification
methodology

7

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

8

Overall architecture (preview)

DUT

Generator

...
test_env env = new;
env.run();
...

Transactor

Driver

Self Check

Monitor

High level
transactions

Checker

Monitor Functional
Coverage

Properties Checker

Atomic
transactions

Constraints;
directed tests

9

Support infrastructure

• VMM Standard Library provides
– Message logging service
– Event notification service
– Base classes for

transaction, transactor, channel, environment

• VMM-compliant environments must use these

• Highly user-configurable through class inheritance

10

Logging

• Verification environment must report interesting
activity, but we need…

– Consistency post-processing and interpretation
– Localisation identification and control of source
– Configurability control of message severity and type
– Control effect on simulation behaviour

• NEVER use $display for message logging!

11

Notification

• Like events, but much more flexible

• Used by transactors and channels to mark activity

• Every transactor keeps a reference to the notification
service instance that it uses

12

Transactors and channels

• Transaction objects are produced by a transactor

Transactor DUTTransactor Transactor

command level
transactor

VMM
channel nets and ports

13

Transactors are class objects…

• … transactors are not module instances!

• Classes allow for
– randomization of configuration of verification environment
– OO inheritance
– easy passing of object references

• Class objects can be instanced in a program
– modules cannot

14

Test case

Environment

Test environment structure

DUTTransactorcommand-level

Transactor

channel

Transactor

channel

functional-level

generator

TCP/IP packets

Ethernet frames

...
test_env env = new;
env.run();
...

Test case instances,
configures and runs a

verification environment

top-level
test harness

module

object

15

Layered architecture

DUT

Generator

...
test_env env = new;
env.run();
...

Transactor

Driver

Self Check

MonitorChecker

Monitor Functional
Coverage

Properties Checker

test level

scenario level

functional level

command level

signal level
module

object

High level
transactions

Atomic
transactions

Constraints;
directed tests

16

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

17

Classes, objects and references

• It's not like C++…

class Data_User;
Data d1 = new;
Data d2;
int N = 3;

endclass

class Data_User;
Data d1 = new;
Data d2;
int N = 3;

endclass

class Data;
rand int A;

rand bit B;
endclass

class Data;
rand int A;

rand bit B;
endclass

other members are
stored directly

object of class
Data_User

class members
of class type are

held as referencesnull

3

0

0

object of class
Data

d1

d2

N

A

B

18

Beware copying!

• Copying a class-type member means
copying the reference

class Data_User;
Data d1 = new;
Data d2 = d1;
task confusing_copy;
d1.A = 5;

$display("A=%0d", d2.A);
endtask

endclass

class Data_User;
Data d1 = new;
Data d2 = d1;
task confusing_copy;
d1.A = 5;

$display("A=%0d", d2.A);
endtask

endclass

object of class
Data_User

5

0

object of class
Data

d1

d2

A

B

5

19

Beware comparison!

• Comparison means comparing the references
class Data_User;
Data d1 = new;
Data d2 = new;
task confusing_compare;
d1.A = 5;

d2.A = 5;
if (d1 == d2)
$display("same");

else
$display("different");

endtask
endclass

class Data_User;
Data d1 = new;
Data d2 = new;
task confusing_compare;
d1.A = 5;

d2.A = 5;
if (d1 == d2)
$display("same");

else
$display("different");

endtask
endclass

different

object of class
Data_User

5

0

object of class
Data

d1

d2

A

B

5

0

object of class
Data

A

B

20

Solving the copy/compare problem

• Every useful class must have copy and compare
methods
– application-specific code to perform copy and comparison
– virtual methods enforce calling convention

• VMM base classes provide this

21

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

22

Transaction data items

• Always modeled as a class derived from vmm_data

• All infrastructure expects to handle
objects of the base class vmm_data
– and can therefore handle derived-class objects too

• Core functionality is provided in the base class
– Add your own data-specific extensions

23

Modeling transaction data

• Application-specific class derived from vmm_data

class Bus_Cycle extends vmm_data;
typedef enum bit {MEM, IO} Bus_Space;

typedef enum bit {RD, WR} Bus_Dir;
rand bit [15:0] addr;
rand bit [7:0] data;
rand Bus_Space space;
rand Bus_Dir dir;
...

endclass : Bus_Cycle

class Bus_Cycle extends vmm_data;
typedef enum bit {MEM, IO} Bus_Space;

typedef enum bit {RD, WR} Bus_Dir;
rand bit [15:0] addr;
rand bit [7:0] data;
rand Bus_Space space;
rand Bus_Dir dir;
...

endclass : Bus_Cycle

data members representing
transaction characteristics
should be declared rand

standard virtual methods
overridden here

24

Overriding virtual methods

rand bit [15:0] addr;
rand bit [7:0] data;
rand Bus_Space space;
rand Bus_Dir dir;

rand bit [15:0] addr;
rand bit [7:0] data;
rand Bus_Space space;
rand Bus_Dir dir;

psdisplay
is_valid
allocate
copy
compare

psdisplay
is_valid
allocate
copy
compare

extensions of vmm_data
must override these

virtual function bit is_valid (
bit silent = 1,
int kind = -1);

if ((space == IO) && (addr > 0xff))
is_valid = 0;

else
is_valid = 1;

if (!is_valid && !silent)

<generate error message>
endfunction

virtual function bit is_valid (
bit silent = 1,
int kind = -1);

if ((space == IO) && (addr > 0xff))
is_valid = 0;

else
is_valid = 1;

if (!is_valid && !silent)

<generate error message>
endfunction

byte_pack
byte_unpack
byte_size
max_byte_size

byte_pack
byte_unpack
byte_size
max_byte_size

optional

25

vmm_data::copy()

virtual function vmm_data copy (vmm_data to = null);virtual function vmm_data copy (vmm_data to = null);

• Copies this object into the target (to) object
– returns reference to copied object

• If target is null, automatically creates new object
– using virtual method allocate(), not new!

• Checks target is of appropriate derived class

• Recommended implementation shown in VMM
Standard Library Specification

26

vmm_data::copy_data()

virtual protected function void copy_data (vmm_data to);virtual protected function void copy_data (vmm_data to);

• Copies the vmm_data base-class contents
– You don't need to know the details of what's in vmm_data

27

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

28

Modeling transactors and channels

• All transactors derived from vmm_xactor

Generator

Transactor

Driver

• Channels created using
`vmm_channel macro

• Transaction objects
modeled using vmm_data

• Pin-level interconnect
modeled as interface

29

Pin level interconnect

• Driver is a class object, not a module instance
– Allows randomized configuration of test environment

• Pin-level interconnect
modeled as interface

• How can we connect a driver to any suitable
interface instance?
– Solution: virtual interface

DUT

Driver
Command-level

transactor

30

Virtual interface

class cmd_level_xactor extends vmm_xactor;
virtual interface itf.clx V;

task pulse;
V.C.sig <= 1’b1;
@(V.C);

if (V.C.sig) ...
endtask

endclass

class cmd_level_xactor extends vmm_xactor;
virtual interface itf.clx V;

task pulse;
V.C.sig <= 1’b1;
@(V.C);

if (V.C.sig) ...
endtask

endclass
interface itf (input bit clk);
wire sig;

clocking C @(posedge clk);
output #1 sig;

endclocking
modport clx (clocking C);

endinterface

interface itf (input bit clk);
wire sig;

clocking C @(posedge clk);
output #1 sig;

endclocking
modport clx (clocking C);

endinterface

Transactor can drive any
instance of this interface

Modport gives access
to clocking block

Clocking block
specifies directions
and detailed timing

Cycle delay

31

Connecting the virtual interface

class cmd_level_xactor extends vmm_xactor;
virtual interface itf.clx V;

function new (virtual interface itf.clx V);
this.V = V;
...

endfunction
...

class cmd_level_xactor extends vmm_xactor;
virtual interface itf.clx V;

function new (virtual interface itf.clx V);
this.V = V;
...

endfunction
...

constructor

module top;
bit clock;
itf Drv_Itf (clock);
...

module top;
bit clock;
itf Drv_Itf (clock);
...

class test_env extends vmm_env;
...

virtual function void build();
...
cmd_level_xactor Driver =

new(top.Drv_Itf.clx);
...

class test_env extends vmm_env;
...

virtual function void build();
...
cmd_level_xactor Driver =

new(top.Drv_Itf.clx);
...interface instance supplied

as constructor argument

test harness

32

module bad_top_level;
initial begin
cmd_level_xactor

BFM(top.Drv_Itf.clx);
...
BFM.pulse();
...

module bad_top_level;
initial begin
cmd_level_xactor

BFM(top.Drv_Itf.clx);
...
BFM.pulse();
...

X
X

Execution environment

• Transactor code must execute in Reactive region
– Avoids races with design, uses clocking correctly

• Instantiate class and call its code from a program

program good_top_level;
initial begin
cmd_level_xactor

BFM (top.Drv_Itf.clx);

...
BFM.pulse();
...

program good_top_level;
initial begin
cmd_level_xactor

BFM (top.Drv_Itf.clx);

...
BFM.pulse();
...

OK

OK

33

Transactors and channels (review)

• Some transactors
connect to signals …

• … some connect to
other transactors Transactor

DUT

Transactor

Transactor

command level
transactor

VMM channel

interface

34

Why use channels?

• Transactor A could call task/function in Transactor B
– Each transactor would need to know about its neighbour

• Channel decouples each transactor from others
– Uniform protocol
– Transactors can be swapped easily

cTransactor
A

Transactor
B

VMM channel

35

Creating a channel

• Create a channel class for each transaction class
– Independent of any connected transactors

• Macro `vmm_channel hides implementation detail
– Creates new class Bus_Cycle_channel

class Bus_Cycle extends vmm_data;
...

endclass : Bus_Cycle
`vmm_channel(Bus_Cycle);

class Bus_Cycle extends vmm_data;
...

endclass : Bus_Cycle
`vmm_channel(Bus_Cycle);

36

c

Channel features

• put/get/peek functions may block on empty/full
• sneak function inserts an entry even if channel full
• peek function examines without removing
• active slot stores “item currently being consumed”

VMM channel

-(n-1)
1

-n
0

-2
n-2

-1
n-1

-(n-2)
2

Items numbered
from either end

active slot

37

Generators

• A transactor with
no upstream input

• Typically sends data to a channel
– best to keep generator and command-level distinct

• Needs a generation strategy
– Single transactions? Streams of transactions?

TransactorTransactor

generator

VMM channel

38

Creating an atomic generator

class Bus_Cycle extends vmm_data;
...

endclass : Bus_Cycle
`vmm_channel(Bus_Cycle);
`vmm_atomic_gen(Bus_Cycle, "description");

class Bus_Cycle extends vmm_data;
...

endclass : Bus_Cycle
`vmm_channel(Bus_Cycle);
`vmm_atomic_gen(Bus_Cycle, "description");

defines class Bus_Cycle_atomic_gen

• Data class must have constructor with no arguments

• Generator streams data items into its output channel
– Data items are unrelated

defines class Bus_Cycle_channel

39

Additional features of atomic generator

• Generator class is inherited from vmm_xactor
– start, stop, reset functionality
– callbacks (more detail later!)

• stop_after_n_insts

• inject method allows testcase to insert directed
test items amongst the random stream

40

Randomisation

• Data members of vmm_data derivatives should be
declared rand
– allows random generation via randomize() method
– derived classes can add constraints
– constraints can be switched using constraint_mode()
– item randomization can be switched using rand_mode()

• How do you randomize which derived class to use?

41

Factory

• Why go to all this trouble?

class Bus_xactor extends vmm_xactor;
Bus_Cycle randomized_cycle;

...
function bit make_a_cycle();
randomized_cycle.randomize();
return randomized_cycle.copy();

endfunction : make_a_cycle
...

endclass : Bus_xactor

class Bus_xactor extends vmm_xactor;
Bus_Cycle randomized_cycle;

...
function bit make_a_cycle();
randomized_cycle.randomize();
return randomized_cycle.copy();

endfunction : make_a_cycle
...

endclass : Bus_xactor

42

Using a factory

• It's easy to upgrade: class Bi_Cycle extends Bus_Cycle;
...

class Bi_Cycle extends Bus_Cycle;
...

task Special_Test;
Bus_xactor gen;

Bus_Cycle Bus_factory = new;
Bi_Cycle Bi_factory = new;
...

gen.randomized_cycle = Bi_factory;
... // do some tests
gen.randomized_cycle = Bus_factory;

gen.randomized_cycle.Constr1.constraint_mode(0);
... // do some more tests

endtask : Bi_cycle

task Special_Test;
Bus_xactor gen;

Bus_Cycle Bus_factory = new;
Bi_Cycle Bi_factory = new;
...

gen.randomized_cycle = Bi_factory;
... // do some tests
gen.randomized_cycle = Bus_factory;

gen.randomized_cycle.Constr1.constraint_mode(0);
... // do some more tests

endtask : Bi_cycle

class Bus_xactor extends vmm_xactor;
Bus_Cycle randomized_cycle;
...
function bit make_a_cycle();

randomized_cycle.randomize();
return randomized_cycle.copy();

endfunction : make_a_cycle
...

endclass : Bus_xactor

class Bus_xactor extends vmm_xactor;
Bus_Cycle randomized_cycle;
...
function bit make_a_cycle();

randomized_cycle.randomize();
return randomized_cycle.copy();

endfunction : make_a_cycle
...

endclass : Bus_xactor

control individual constraints

43

Creating a scenario generator

`vmm_scenario_gen(Bus_Cycle, "description");`vmm_scenario_gen(Bus_Cycle, "description");

• Defines several new classes:
– Bus_Cycle_scenario

– Bus_Cycle_atomic_scenario

– Bus_Cycle_scenario_gen

– Bus_Cycle_scenario_election

– Bus_Cycle_scenario_gen_callbacks

class Bus_Cycle extends vmm_data; ...class Bus_Cycle extends vmm_data; ...

randomizable scenario descriptor

derivative of vmm_xactor

makes random choice of scenario

callback façade

simple scenario with just one cycle

44

Building the environment

• Testcase instantiates the specialised verification
environment

• Environment has
virtual methods that
configure, build and
start everything

Test case

Environment

DUTTransactor

Transactor

Transactor

Ethernet

...
XYZ_env env = new(...);
...

TCP/IP

45

Environment virtual methods

Test case

Environment

Transactor

Transactor

Transactor

Ethernet

TCP/IP

class XYZ_env extends vmm_env;
TCPIP_xactor PktGen;

ETH_xactor FrameGen;
MII_xactor MII_drv;
...

virtual function void build();
super.build();
PktGen = new(...);
FrameGen = new(...);
...

endfunction : build

...
endclass : XYZ_env

class XYZ_env extends vmm_env;
TCPIP_xactor PktGen;

ETH_xactor FrameGen;
MII_xactor MII_drv;
...

virtual function void build();
super.build();
PktGen = new(...);
FrameGen = new(...);
...

endfunction : build

...
endclass : XYZ_env

override standard methods

call base-class methods

customize environment

46

Virtual methods of vmm_env

gen_cfg
build
reset_dut
cfg_dut
start
wait_for_end
stop
cleanup
report

gen_cfg
build
reset_dut
cfg_dut
start
wait_for_end
stop
cleanup
report

• Extensions of vmm_env must
override these methods

• Extensions must first call base-class
method using super.
– guarantees correct operation of run()

• gen_cfg() randomizes a configuration descriptor
• build() constructs environment as specified by

configuration descriptor

47

Concessions to support legacy code

• Command-level transactors can be re-packaged as
module
– use VMM-compliant blocks as BFM in traditional testbench
– transactor and atomic generator instantiated and started

automatically
– controlled through procedural interface

• Existing BFMs can be re-packaged as transactors
– eases migration from legacy environment to VMM

compliance

Detailed recommendations at the end of VMM chapter 4

48

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

49

Assertions

• VMM offers extensive guidance

• Useful for…
– protocol checkers
– sequencing functionality checks

(e.g. arbiter - see SVA checker library)
– protocol coverage using cover property
– triggering a covergroup using sample()

50

Checkers

• Build assertion-based checkers into an interface
– Allows instantiation into program, interface or module

• Libraries of pre-existing checkers
– OVL-equivalent with enhanced instrumentation
– Advanced checker library (currently Synopsys proprietary)

• Or write your own using SVA

51

Scientific verification

• What did I measure?

• What did I learn from the measurements?

• What could I do better next time?

• Have I measured enough?

COVERAGE

Assertions and error checkers

Change tests to improve coverage

Coverage relative to goals

52

Coverage

• Properties written to check protocols can also act as
coverage points
property cycle_start;
!ALE ##1 ALE;

endproperty
property cycle_OK;
cycle_start |-> (RD ^ WR) [*1:3] ##1 !RD && !WR;

endproperty

assert property (cycle_OK);

cover property (cycle_start);

property cycle_start;
!ALE ##1 ALE;

endproperty
property cycle_OK;
cycle_start |-> (RD ^ WR) [*1:3] ##1 !RD && !WR;

endproperty

assert property (cycle_OK);

cover property (cycle_start);

Identify the start of a read or write cycle

Identify correctness of a read or write cycle

Check for correct protocol

Count cycles

53

Controlling coverage and assertions

• Standard macros for global control via `ifdef
`ASSERT_ON
`COVER_ON

`NO_INLINE_ASSERTIONS

• Detailed control via parameter coverage_level_n
in each class that implements functional coverage
– one bit for each coverage point in the class
– if that bit is set in coverage_level_n, a conditional
generate inserts appropriate coverage code

n = 1, 2, 3

54

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

55

Testcase authoring

• Testcase is top level
– Instantiates the verification environment

• Testcase can configure environment and modify its
constraints

• Testcase can inject specific directed stimulus
– e.g. for register initialisation in DUT, corner case testing

• Testcase can hook into, and modify, any transaction
– callback mechanism
– e.g. for error injection, monitoring

56

Injecting directed tests

• Every transactor provides an inject() method
– User-written test case can insert arbitrary stimulus at any

level of abstraction

• Injected transactions
trigger callbacks
– as if they were from

the transactor

Test case

Environment

DUTTransactor

Transactor

Transactor

Ethernet

...
env.framer.inject(MyFrame);
...

TCP/IP

57

Checking overall behavior

• Not part of the testcase's problem, but…
• … another reason to use callbacks!

• Every transaction should be remembered so its
results can be checked

• Scoreboard and checking should be independent of
transactor

Scoreboard

58

Checker in the architecture

DUT

Generator

...
test_env env = new;
env.run();
...

Transactor

Driver

Self Check

Monitor

High level
transactions

Checker

Monitor Functional
Coverage

Properties Checker

Atomic
transactions

Constraints;
directed tests

Checker operates at its own
chosen level of abstraction

59

Callbacks

• Transactor should call an empty function
whenever it does anything interesting

• Extensions supply a body for the empty function
– to hook into the transactor's activity

• A great idea, but hard to make it work…
– Where is the empty function defined? How is it extended?
– Dynamically add/remove these hooks?

60

Solution: The callback façade class

• Transactor class test_xactor extends vmm_xactor;
...

do interesting stuff;
`vmm_callback(

test_callbacks,

interesting(this, ..., ...));
...

endclass : test_xactor

class test_xactor extends vmm_xactor;
...

do interesting stuff;
`vmm_callback(

test_callbacks,

interesting(this, ..., ...));
...

endclass : test_xactor

class test_callbacks extends vmm_callbacks;
virtual function void interesting (

test_xactor source, ..., ...);
endfunction

endclass : test_callbacks

class test_callbacks extends vmm_callbacks;
virtual function void interesting (

test_xactor source, ..., ...);
endfunction

endclass : test_callbacks

• Façade

must use this macro

façade class name

façade function to call

Reference to calling
transactor

Must be task or
function void

61

Specialising a callback façade

class test_checker_callbacks extends test_callbacks;
virtual function void interesting (

test_xactor source, ..., ...);
// make use of or modify the information

endfunction
endclass : test_checker_callbacks

class test_checker_callbacks extends test_callbacks;
virtual function void interesting (

test_xactor source, ..., ...);
// make use of or modify the information

endfunction
endclass : test_checker_callbacks

• User-defined extension functionality
– triggered by callback in transactor

• Pass information back to transactor
– through ref or non-const object arguments

62

Using a specialised callback façade

• Environment's build() method registers callbacks

class my_special_env extends vmm_env;
test_xactor stim_src;

test_checker_callbacks cb;
...
virtual function void build();

...
cb = new(...);
stim_src.append_callback(cb);

...
endfunction : build
...

endclass : my_special_env

class my_special_env extends vmm_env;
test_xactor stim_src;

test_checker_callbacks cb;
...
virtual function void build();

...
cb = new(...);
stim_src.append_callback(cb);

...
endfunction : build
...

endclass : my_special_env

Builds environment
according to

configuration descriptor

63

Order of execution of callbacks

class ... extends ...;
...
do interesting stuff;
`vmm_callback(...);
...

endclass : test_xactor

class ... extends ...;
...
do interesting stuff;
`vmm_callback(...);
...

endclass : test_xactor

Transactor

virtual function void ...virtual function void ...

virtual function void ...virtual function void ...

virtual function void ...virtual function void ...

virtual function void ...virtual function void ...

virtual function void ...virtual function void ...

Callbacks

Log / scoreboard
the transaction

Modify, insert or
drop transaction

Assertions,
coverage

Assertions,
coverage

Register using
append_callback

Modify, insert or
drop transaction

Register using
prepend_callback

Log / scoreboard
the transaction

Register
this one first!

64

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking, assertions and coverage
• Creating testcases
• System-level verification (preview)
• Conclusions

65

XVCs and coordination of stimulus

• ARM's system-level verification architecture
• XVC = Extensible Verification Component
• Like a transactor, but transactions controlled from an

action queue
– Actions can be derived from a plain-text command file

• Multiple XVCs can be coordinated by a single
XVC Manager instance
– facilitates generation of scenarios with specific timing

relationships between different activities

Just an introduction!

66

Agenda

• Motivation and background
• Introduction to VMM test environment
• SystemVerilog classes
• Modeling test data
• Modeling the test environment
• Self-checking and assertions
• Generating stimulus
• System-level verification (preview)
• Conclusions

67

Current levels of support

• Appendix A of the book provides a complete
description of VMM Standard Library, enabling
engineers to create their own implementation

• Synopsys provides a compiled version of VMM
Standard Library with VCS, to speed adoption

• Synopsys will license the source code of its
implementation of VMM Standard Library to
customers and SystemVerilog Catalyst members

68

Conclusions

• VMM packages best practice ready for you to use:
– SystemVerilog issues already handled
– scalable for very large environments
– successfully assimilates legacy verification code

• VMM Standard Library benefits:
– encourages interoperability
– provides initial framework
– out-of-the-box solutions for many problems

• Backed-up by a detailed and practical book

69

Coda

• Thanks!

• Questions?

