A
-4

BOSTON DOULOS

2005

il

Verification as a Mature Discipline:

Using the
Verification Methodology Manual for SystemVerilog

Jonathan Bromley
Doulos Ltd, Ringwood, UK

2

g‘l][] Aims A

BOSTON

9005 DOULOS

 Road map
— Covers highlights and interesting features from the VMM
— Many additional concepts and details in the book itself

e Key ideas
— EXxplore overall structure, motivation, techniques

* Practical challenges
— Verification methodology must operate in the real world
— Uses some advanced SystemVerilog features

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Mode
Mode
Self-c

INg test data
Ing the test environment

necking, assertions and coverage

Creating testcases
System-level verification (preview)
Conclusions

4

g‘l][] Motivation i;\

BOSTON

9005 DOULOS

 All verification environments should follow industry
best-practice and shared conventions

— for flexibility, interoperability, re-use, verification confidence

 Verification is complicated and difficult
— needs specific guidelines and ready-to-use infrastructure

e Adopt proven prior art wherever possible

N A)
Sl][] Meeting the challenges fa\

- DOULOS
2009
« Common infrastructure must support diverse
applications
— Standard design patterns, agreed approaches

— Class inheritance and polymorphism permits
application-specific extensions of standard library

 Verification practice needs a scientific basis
— Proven benefits of random stimulus generation
— Functional coverage for measurable verification productivity

N A
Sl][] VMM background fa\

BOSTON

9005 DOULOS

 Jointly created by Synopsys and ARM

* Incorporates...
— ARM experience in system level verification
— Synopsys experience with advanced RTL verification

« Builds on existing Synopsys reference verification
methodology

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Mode
Mode
Self-c

INg test data
Ing the test environment

necking, assertions and coverage

Creating testcases
System-level verification (preview)
Conclusions

il

)l Overall architecture (preview) fa\
@@@5 DOULOS

test _env env = new;

env.run();
Constraints; _ =
directed tests
Generator Self Checki:
High level =
transactions < 7
Travnsactor MonltorA£:C>Functional
Atomic —_ 4 ~ Coverage
transactions = E) =|-|- = - = Z - - - - ————— U .
N4
A4 ||
Checker Driver Properties Checker Monitor [!:l'>

N A
Sl][] Support infrastructure o\

BOSTON

9005 DOULOS

« VMM Standard Library provides

— Message logging service
— Event notification service

— Base classes for
transaction, transactor, channel, environment

 VMM-compliant environments must use these

* Highly user-configurable through class inheritance

0

g‘l][] Logging ié:

BOSTON

9005 DOULOS

 Verification environment must report interesting
activity, but we need...

— Consistency post-processing and interpretation

— Localisation identification and control of source

— Configurability control of message severity and type
— Control effect on simulation behaviour

* NEVER use $display for message logging!

g‘l][] Notification i;f\

BOSTON

9005 DOULOS

e Like events, but much more flexible

e Used by transactors and channels to mark activity

* Every transactor keeps a reference to the notification
service instance that it uses

A % 12
sl][] Transactors and channels fo\

BOSTON

9005 DOULOS

e Transaction objects are produced by a transactor

[command Ievel}
,\ transactor

Transactor 1/> Transactor Transactorr
VMM nets and ports
channel

DUT

A . 13
Sl][] Transactors are class objects... iéf\

BOSTON

DOULOS
20095
e ... transactors are not module instances!

e Classes allow for
— randomization of configuration of verification environment
— OO Inheritance
— easy passing of object references

e Class objects can be instanced in a program
— modules cannot

BOSTON

N
Sl][] Test environment structure

2005 DOULOS
FSI case . l
Test case instances, -
. object
test env env = new: configures and runs a
env.run(); verification environment
- module
-
mvironment =
(generator)Transactor
TCP/IP packets EI (channel)
N Z top-level
> NS
test harness
(functional-level JTFaﬂS&CtOI’ e
' F
Ethernet frames EI (channel)
~ Z
P p |

(command-level)Transactor

DUT

Tﬁ

BOSTON

2005

)
l][] Layered architecture

DOULOS
ol test level ’
Sonsuni: l ---------------------------
G(‘mefamscenarlo Ievel—
trzlr?sr;cl:?;erlls =) -H--- el o el
wome | ==functional level "% s —gneos
transactlons".-- ———————————————————————— L - ==
Checker | | Drivercommand level J[ventor c—=p
B ﬂ ---- U R
[.
:;Q:Slgnal level

object

module

=-"|

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Mode
Mode
Self-c

INg test data
Ing the test environment

necking, assertions and coverage

Creating testcases
System-level verification (preview)
Conclusions

il

17
Ay Classes, objects and references fo\

@@@5 DOULOS
e |t's not like C++...

object of class
class Data; Data
rand int A;
rand bit B; Al O
endclass
object of class Bl O
Data User
class Data_ User; //
Data dl1 = new; di| @ class members
Data d2- of class type are
’ held as references
int N = 3: d2| null [
endclass r
N 3 other members are
[stored directly

Wl

BOSTON

2005

Beware copying!

18
A

fa\

DOULOS

* Copying a class-type member means
copying the reference

class Data User;
Data dl1 = new;
Data d2 = di1;
task confusing_copy;

dl.A = 5;
$display("A=%0d"", d2.A);
endtask 5
endclass

object of class
Data User

dl

d2

4

v

o

object of class
Data

Al 5

Bl O

19

) [] A
Sl] Beware comparison! fa\
DOULOS
2005
« Comparison means comparing the references
class Data User; object of class
Data d1 = new; bata
Data d2 = new; N
task confusing_compare;
322 - 2; object of class Bl O
-A =9, Data_User e
' ((_jl - dﬁ) . d1 .// object of class
$display(‘'same'™) ; Data
else
sdisplay('different™): | 92 ‘\\\‘ Al 5
endtask different
endclass B 0

A . 20
Sl][] Solving the copy/compare problem iéj\

BOSTON

@@@5 DOULOS

e Every useful class must have copy and compare
methods

— application-specific code to perform copy and comparison
— virtual methods enforce calling convention

« VMM base classes provide this

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Modeling test data

Modeling the test environment
Self-checking, assertions and coverage
Creating testcases

System-level verification (preview)
Conclusions

h \ 22
Sl][] Transaction data items £a\

BOSTON

9005 DOULOS

« Always modeled as a class derived from vmm_data

 All infrastructure expects to handle
objects of the base class vmm _data

— and can therefore handle derived-class objects too

e Core functionality is provided in the base class
— Add your own data-specific extensions

23
A

)il Modeling transaction data Lo\

@@@5 DOU(OS
« Application-specific class derived from vmm_data

il

class Bus_Cycle extends vmm_data;
typedef enum bit {MEM, 10} Bus_ Space;
typedef enum bit {RD, WR} Bus Dir;
rand bit [15:0] addr; (

rand bit [7:0] data;
rand Bus Space space;

rand Bus_Dir dir; .
) standard virtual methods
overridden here

transaction characteristics

data members representing
should be declared rand

endclass :© Bus Cycle N

Wl

BOSTON

2005

Overriding virtual methods

24

fa\

DOULOS

rand bit [15:0] addr;

extensions of vmm_data
must override these

rand bit [7:0] data;
rand Bus Space space;

psdisplay
i1s valid
allocate

Ccopy
compare

C optional)

byte pack
byte unpack
byte size
max_byte size

rand Bus Dir dir;

virtual function bit 1s_valid (
bit silent = 1,
int kind = -1);
IT ((space == 10) && (addr > Oxff))
i1s valid = O;
else
i1Is valid = 1;
iIT (1is valid && !silent)
<generate error message>
endfunction

5

g‘ll[] vmm_data: :copy() jé;

BOSTON

9005 DOULOS

virtual function vmm _data copy (vmm data to = null); ‘

e Coples this object into the target (to) object
— returns reference to copied object

o |f target is null, automatically creates new object
— using virtual method al locate(), not new!

Checks target is of appropriate derived class

Recommended implementation shown in VMM
Standard Library Specification

g‘ll[] vmm_data: :copy data() j;\;‘

BOSTON

9005 DOULOS

virtual protected function void copy data (vmm _data to); ‘

« Coples the vmm_data base-class contents
— You don't need to know the detalls of what's in vmm_data

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Modeling test data

Modeling the test environment
Self-checking, assertions and coverage
Creating testcases

System-level verification (preview)
Conclusions

A . 28
le[l Modeling transactors and channels fa\

BOSTON

9005 DOULOS
« All transactors derived from vmm_Xxactor

* Transaction objects
modeled using vmm_data

« Channels created using
“vmm_channel macro

 Pin-level interconnect
modeled as 1nterface

9

) A i
le[l Pin level interconnect fa\

BOSTON

9005 DOULOS

* Driver is a class object, not a module instance
— Allows randomized configuration of test environment

(Command-level
Driver L transactor

 Pin-level iInterconnect

modeled as interface\ L:'@‘l
f' DUT i

 How can we connect a driver to any suitable
Interface instance?
— Solution: virtual interface

h % 30
sl][] Virtual interface fo\

BOSTON

9005 DOULOS

class cmd level xactor extends vmm_ Xxactor;
virtual iInterface 1tf.clx V;

task pulse; Transactor can drive any
V.C.sig <= 17b1; instance of this interface

(Cycle delay) @(v.C);

iIf (V.C.sig) ...
endtask interface itf (input bit clk);
endclass wire sig;
clocking C @(posedge clk);

" Clocking block | _—+ output #1 sig;

specifies directions endclocking

d detailed timi =

_and detailed timing ////,modport clx (clocking C);
" Modport gives access Y endinterface
\ 1o clocking block y

31
2

Connecting the virtual interface fa\

'

il

BOSTON

9005 DOULOS

class cmd level xactor extends vmm_ Xxactor;
virtual iInterface 1tf.clx V;
function new (virtual interface i1tf.clx V);

<: :>'this.V = V;
constructor
endfunction
_ class test_env extends vmm _env;
module top; virtual function void build();
bit clock; .-
itf Drv_I1tf (clock); cmd_level xactor Driver =
S (’ new(top.Drv_Itf.clx);
test harness) _ _ :
S (interface instance supplied w

as constructor argument)

32
A

)
Sl][] Execution environment Lo\

BOSTON

9005 DOULOS

e Transactor code must execute in Reactive region
— Avoids races with design, uses clocking correctly

 |nstantiate class and call its code from a program

modulle bad _top level;
initial begin
cmd_level xactor
BFM(top-Drv%-nIY\'
program good top_ level;

BFM-pul%((); initial begin

cmd_level_xactor

BFM (top-Drv_Itf._clx);

BFM.pulse() ;

A % 33
SU[J Transactors and channels (review) fa\

BOSTON

@@@5 DOULOS
N
command level
[transactor)

e Some transactors
_ Transactor [DUT
connect to signals ... 1
|

(interface)

e .. SOmMe connectto §| N
Other transactors Transactor _ |/> Transactor

(VMM channel)

h } 34
Sl][] Why use channels? fa\

BOSTON

9005 DOULOS

 Transactor A could call task/function in Transactor B
— Each transactor would need to know about its neighbour

=
Transactor = '\> Transactor

A r V] B

(VMM channel)

e Channel decouples each transactor from others
— Uniform protocol
— Transactors can be swapped easily

35
A

)
Sl][] Creating a channel fa\

BOSTON

9005 DOULOS

e Create a channel class for each transaction class
— Independent of any connected transactors

-{:Class Bus Cycle extends vmm_data;

endclass : Bus Cycle
— ~vmm_channel (Bus_Cycle);

« Macro vmm_channel hides implementation detalil
— Creates new class Bus_Cycle_channel

36

N A
Sl][] Channel features fa\

L DOULOS
2005
(VMM channel)
actlve sIot)
I I =)
n-1 n-2 0 -
-1 -2 (n 2) (n 1) -n

(tems pumbere |
e put/get/peek functions may block on empty/full
e sneak function inserts an entry even if channel full
e peek function examines without removing

 active slot stores “item currently being consumed”

g‘l][] Generators

BOSTON

2005

A

DOULOS

A transactor with
no upstream input

(generator)

=

Transactor

4

> Transactor

(VMM channel)

« Typically sends data to a channel
— best to keep generator and command-level distinct

 Needs a generation strategy
— Single transactions? Streams of transactions?

38
2

A% Creating an atomic generator fa\
@@@5 DOULOS

class Bus_Cycle extends vmm_data;

il

?ndCIaSS - Bus_Cycle /C defines class Bus_Cycle channel)
vmm_channel (Bus_Cycle);

‘vmm_atomic_gen&?us_Cycle, ""description');

t defines class Bus Cycle atomic_gen)

e Data class must have constructor with no arguments

e Generator streams data items into its output channel
— Data items are unrelated

39

A% Additional features of atomic generator fa\
@@@5 DOULOS

e Generator class is inherited from vmm_Xxactor

— start, stop, reset functionality
— callbacks (more detail later!)

Wl

e stop _after n_iInsts

e Inject method allows testcase to insert directed
test items amongst the random stream

g‘ \ 40
l][] Randomisation £a\

BOSTON

9005 DOULOS

« Data members of vmm_data derivatives should be
declared rand

— allows random generation via randomize() method

— derived classes can add constraints
— constraints can be switched using constraint_mode()

— Item randomization can be switched using rand_mode()

 How do you randomize which derived class to use?

Wl

Factory

BOSTON

2005

41

fa\

DOULOS

 Why go to all this trouble?

class Bus xactor extends vmm_ xactor;
Bus Cycle randomized cycle;

function bit make a cycle();
randomized _cycle.randomize();
return randomized cycle.copy(Q);

endfunction : make _a cycle

endclass : Bus xactor

42
A

)Y Using a factory fa\
2005 DOULOS
e |t'S easy to upgrade: class Bi_Cycle extends Bus Cycle; ‘

il

class Bus_xactor extends vmm_xactor;
Bus_Cycle randomized_cycle;

task SpeC|aI_Test; function bit make_a cycle();
Bus Xxactor gen; randomized_cycle.randomize();
o return randomized_cycle.copy();
BUS_CyC|e Bus_facto ry = new,; endfunction : make_a cycle

Bi_Cycle Bi_factory = new; oo
endclass : Bus_xactor

gen.randomized_cycle = Bi_factory;

... // do some tests

gen.randomized cycle = Bus_factory;

gen.randomized cycle.Constrl.constraint mode(0);

... // do some more tests (control individual constraints)
endtask : Bi_cycle

il

A% Creating a scenario generator fa\
@@@5 DOULOS

class Bus _Cycle extends vmm data; ... ‘

“vmm_scenario_gen(Bus_Cycle, "description™); ‘

e Defines several new classes:

— Bus _Cycle _scenario (randomizable scenario descriptor)

— Bus_Cycle_atomic_scenario (simple scenario with just one cycle)
— Bus Cycle scenario gen (derivative of vmm_xactor)

— Bus_Cycle scenario_election (makes random choice of scenario)

— Bus _Cycle _scenario_gen_callbacks (callback facade

4

I -
SU[] Building the environment fa\

BOSTON
DOULOS

2009
» Testcase instantiates the specialised verification
environment

Test case

e Environment has XYZ_env env = new(...);
virtual methods that |——=
. . Environment
configure, build and Transactor
start everything reene () |

Transactor
F1
Ethernet L
e I

Transactor | I DUT

BOSTON

2005

N
le[l Environment virtual methods

A

45

fa\

DOULOS

Test case

Environment

Transactor

TCP/IP L

Transactor

Ethernet L

I
Transactor | E >

class XYZ env extends vmm _env;
TCPIP_xactor PktGen;
ETH Xxactor FrameGen;
MI1_ Xxactor MI1 drv;

(override standard methods

virtual function void build();

super .bui |d();<call base-class methods)

PktGen = new(...);

FrameGen = new(...):
- - customize environment)

endfunction : build

endclass : XYZ env

6

N A *
SU[] Virtual methods of vmm env £a\

BOSTON

DOULOS
2005
gen_cfg . Exterwons of vmm_env must
build override these methods
reset_dut _ _
cfg_dut Extensions must first call base-class
start .
vait for end method using super.
stop — guarantees correct operation of run()
cleanup
report

e gen_cftg() randomizes a configuration descriptor

e bur ld() constructs environment as specified by
configuration descriptor

s . 47
Sl][] Concessions to support legacy code iéj\

BOSTON

@@@5 DOULOS

« Command-level transactors can be re-packaged as
module
— use VMM-compliant blocks as BFM in traditional testbench

— transactor and atomic generator instantiated and started
automatically

— controlled through procedural interface

« Existing BFMs can be re-packaged as transactors

— eases migration from legacy environment to VMM
compliance

(Detailed recommendations at the end of VMM chapter 4)

g\l][] Agenda

BOSTON

2005

8

A

DOULOS

Motivation and background

Introduction to VMM test environment
SystemVerilog classes

Modeling data

Modeling the test environment
Self-checking, assertions and coverage
Creating testcases

System-level verification (preview)
Conclusions

g‘l][] Assertions

BOSTON

2005

A

DOULOS

VMM offers extensive guidance

« Useful for...
— protocol checkers

— sequencing functionality checks
(e.g. arbiter - see SVA checker library)

— protocol coverage using cover property
— triggering a covergroup using sample()

g‘l][] Checkers i;f\

BOSTON

9005 DOULOS

e Build assertion-based checkers into an interface
— Allows instantiation into program, interface or module

 Libraries of pre-existing checkers
— OVL-equivalent with enhanced instrumentation
— Advanced checker library (currently Synopsys proprietary)

e Or write your own using SVA

A f‘_ 51
sl][] Scientific verification fo\

BOSTON

@@@5 DOULOS
 What did | measure?

(COVERAGE)

« What did | learn from the measurements?
(Assertions and error checkers)

 What could | do better next time?
(Change tests to improve coverage)

 Have | measured enough?
(Coverage relative to goals)

2

il

)\l Coverage fa\
@@@5 DOULOS

e Properties written to check protocols can also act as
coverage points

property cycle start;
TALE ##1 ALE; C Identify the start of a read or write cycle)
endproperty
property cycle OK;
cycle start |-> (RD ™ WR) [*1:3] ##1 !RD && 'WR;
endproperty C ldentify correctness of a read or write cycle)

assert property (cycle 0OK); (:(Hmmkforconectpnnocol:)

cover property (cycle_start); (: Count cycles :)
]

h \ 53
Sl][] Controlling coverage and assertions fa\

BOSTON

9005 DOULOS
o Standard macros for global control via ~1fdef
“ASSERT_ON
“COVER_ON

“NO_INLINE_ASSERTIONS

(n=1,23)

» Detailed control via parameter coverage_ level n
In each class that implements functional coverage

— one bit for each coverage point in the class

— If that bit is set in coverage level n, a conditional
generate inserts appropriate coverage code

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Mode
Mode
Self-c

INg test data
Ing the test environment

necking, assertions and coverage

Creating testcases
System-level verification (preview)
Conclusions

h \ 55
Sl][] Testcase authoring £a\

BOSTON

9005 DOULOS

e Testcase Is top level
— Instantiates the verification environment

e Testcase can configure environment and modify its
constraints

e Testcase can Inject specific directed stimulus
— e.g. for register initialisation in DUT, corner case testing

e Testcase can hook into, and modify, any transaction
— callback mechanism
— e.g. for error injection, monitoring

56
A

N _
Sl][] Injecting directed tests fo\

BOSTON

9005 DOULOS
e Every transactor provides an inject() method

— User-written test case can insert arbitrary stimulus at any
level of abstraction Test case

env.framer.inject(MyFrame);

 |njected transactions
trigger callbacks

— as If they were from
the transactor

Environment

Transactor

TCP/IP L

ransactor

Ethernet L
e |

Transactor |
|

s . 57
SU[] Checking overall behavior fo\
9005 DOULOS
* Not part of the testcase's problem, but...

e ... another reason to use callbacks!

e Every transaction should be remembered so its
results can be checked (_ scoreboard)

e Scoreboard and checking should be independent of
transactor

h % 58
sl][] Checker in the architecture fo\

BOSTON

9005 DOULOS

iéét_env env = new;
env.run();
i /f— .
Checker operates at its own j

Constraints; =] .
directed tests chosen level of abstraction

Generator Self Checke
High level = {\' ____________________ |
transactions 5
Travnsactor MonitorA£:C>Functional
Atomic [4 ~ Coverage
transactions - =j -J- ------------------------ -
V7 =
Checker Driver Properties Checker Monitor [!:l'>

S Callbacks A

BOSTON

9005 DOULOS

e Transactor should call an empty function
whenever it does anything interesting

e Extensions supply a body for the empty function
— to hook into the transactor's activity

e A greatidea, but hard to make it work...
— Where is the empty function defined? How is it extended?
— Dynamically add/remove these hooks?

60
A

)l Solution: The callback fagade class s\
@@@5 DOULOS

° Transactor class test xactor extends vmm_xactor;

il

do iInteresting stuff;
(" must use this macro }=>>vmm_cal Iback(Reference to calling j

(facade class name)—» test callbacks, transactor
(facade function to call >/" nteresting(this, ..., ...));

endclass : test xactor

class test_callbacks extends vmm callbacks;
e Facade _ — o -
virtual function void interesting (
Must be task or test xactor source, ..., -...);
function void endfunction

endclass : test callbacks

Wl

Specialising a callback facade

BOSTON

61
A

fa\

DOULOS

2005

» User-defined extension functionality
— triggered by callback in transactor

class test checker callbacks extends test callbacks;

virtual function void interesting (

test xactor source, ..., ...);
// make use of or modify the information
endfunction

endclass : test checker callbacks

« Pass information back to transactor
— through ref or non-const object arguments

62
A

A% Using a specialised callback fagade fa\
@@@5 DOULOS

 Environment's buil Id() method registers callbacks

Wl

class my special_env extends vmm_env;
test xactor stim_src;
test_checker callbacks cb;

--- Builds environment
virtual function void build(); according to
configuration descriptor

cb = new(...);
stim_src.append_callback(cb);

endfunction : build

endclass : my special _env

BOSTON

2005

)
Sl][] Order of execution of callbacks

A

DOULOS

(Transactor)

class ... extends ...

do interestin
“vmm_callback(...);

T xactor

endclass :

(Callbacks)

REn

Register using
prepend_cal lback

)

Register
this one first!

)

]
i

Register using
append_cal lback

)

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Mode
Mode
Self-c

INg test data
Ing the test environment

necking, assertions and coverage

Creating testcases
System-level verification (preview)
Conclusions

A . 65
Sl][] XV Cs and coordination of stimulus iéf\

BOSTON

@@@5 (Just an introduction! \ DOULOS

N -

 ARM's system-level verification architecture
 XVC = Extensible Verification Component

e Like a transactor, but transactions controlled from an
action queue

— Actions can be derived from a plain-text command file

 Multiple XVCs can be coordinated by a single
XVC Manager instance

— facilitates generation of scenarios with specific timing
relationships between different activities

2005

g‘l][] Agenda

BOSTON

A

DOULOS

Motivation and background
Introduction to VMM test environment
SystemVerilog classes

Mode
Mode
Self-c

INg test data
Ing the test environment

necking and assertions

Generating stimulus
System-level verification (preview)
Conclusions

h \ 67
Sl][] Current levels of support fa\

" DOULOS
9
e Appendix A of the book provides a complete
description of VMM Standard Library, enabling
engineers to create their own implementation

e Synopsys provides a compiled version of VMM
Standard Library with VCS, to speed adoption

e Synopsys will license the source code of its
iImplementation of VMM Standard Library to
customers and SystemVerilog Catalyst members

g‘l][] Conclusions i;\

T DOULOS
2009
« VMM packages best practice ready for you to use:

— SystemVerilog issues already handled

— scalable for very large environments

— successfully assimilates legacy verification code

« VMM Standard Library benefits:

— encourages interoperability
— provides initial framework
— out-of-the-box solutions for many problems

 Backed-up by a detailed and practical book

%[] Coda

BOSTON

2005

e Thanks!

e Questions?

